Introduction to College of Semiconductor Reseach (CoSR)

National Tsinghua University (NTHU)

Chih-Huang Lai (賴志煌)

NTHU is located in Hsinchu City, which is located in the northern Taiwan with an hour drive to Taipei, is surrounded by world-class national laboratories and industries. Hsinchu is also referred to as the science city, the high-tech hub, and the Silicon Valley of Taiwan.

CoSR Half Funded by Government & Half by 12 Semiconductor Companies (2022/4)

CoSR Organization Structure

Dean

Burn J. Lin (林本堅)

NAE, IEEE fellow, Academia Sinica Acadmician

4 Departments

Associate Dean C.H. Lai(賴志煌) Chair Professor IEEE fellow

C.J. Lin 林崇榮

Design

J.J. Liou 劉靖家

Material

S.Y. Chang 張守一

Process

T.S. Gau 高蔡勝

Student Numbers

	Applied		Admitted		In CoSR
PHD	Early Selection	Exam	Screen	Exam	
2022	20	9	14	6	14
2023	10	7	7	4	15
2024	11		7		-
Master	Applied		Admitted		In CoSR
2022	4	.08	8	80	64

International	Applied		Admitted		In CoSD
	Р	M	Р	М	In CoSR
2023(1st half)	3	8	I	0	I (P)
2023(2 nd half)	I	7	1	0	0
2024(1st half)	4	4	3	2	-

- 1. PHD Students 29 (1 international)
- 2.Master Students 141 (0 international)

Faculty •

	Full-time Professors	Joint Professors in NTHU	Joint Professors from Industry
Numbers	6	93	9
Remarks	Majority from retired experienced experts (20+ yrs) from industry (TSMC, Synopsys)	From other departments, Electronic Eng, Materials Sci, Chemical Eng, Physics, Chemistry,etc	From NTU, NSYU, TSRI, ITRI, SRRC, University or research organization

Education Guideline: Training Semiconductor Leaders

Problem Solving!

Course Structure

Design

Device

Material

Process

Introduction

Device

Material

Process

Introduction

Design

Material

Process

Introduction

Design

Device

Process

Introduction

Design

Device

Material

Design specific

Digital

EDA

Required

Analog, RF, Mix-Signal

Al & Signal Processing

Device specific

Device Physics

MEMS

Memory

Sensors

Power devices

Devices Exp.

High Freq.

Material specific

Material Kinetics

Material Analysis

Polymer

Functional Material

Material Analysis

Process specific

Process integration

Lithography

Module Technology

Packaging

Required & Selective

Course-Industry Professors

TSMC VP Michael Wu (吳顯揚) Advanced Device

TSMC VP
Doug Yu(余振華)
「Nanometer Packaging」

PSMC CTO **SZChang(張守仁)**「Process Integration」

KLA Director Q. Zhao(趙強) 「Advanced Metrology」

TSMC Director
KCYee(余國寵)
「Nanometer Packaging」

TEL Senior VP
Peter Loewenhardt

Hand-on Education

Pictures from TEL website

Isolation Formation/Gate Formation

Gate Electrode

Practical course of FinFET Process Fabrication – TSRI 8" production line

DRAM Theory, Practice and Manufacturing – Micron Taiwan FAB

Internship to industry FAB – TSMC, PSMC, UMC,

RESEARCH HIGHLIGHTS OF FOUR DEPARTMENTS

Berkeley EUV

from synchrotron

Process Department

US NAE Member, IEEE Fellow, SPIE Fellow Nanolithography

3D simulation OPC

Goal: Patterning world smallest logic contact-hole pitch

Mask blank acquisition

2D materials High-k and interconnect Packaging

Design Department

CMOS-integrated compute-in-memory based on RRAM for AI edge devices.

Artificial Intelligence (AI) Chips

Device Department

MEMS Chips

Possible Collaboration

- 1.Exchange of students and faculty members
- 2.Co-advising graduate students with scholarship
- 3. Special programs on specific topics (HsinChu and Kaohsiung)

Thank you!

Research in Lai's group

Spintronics (MRAM)

Solar cells

Material sustainability

Semiconductor materials

14

· DRAM:

• SRAM:

Memory unit cell

DRAM

Charge leakage, more power consumption

SRAM

Need continuous power supply

MRAM

Stable polarity , "non-volatile".

• MRAM:

• MRAM:

Memory unit cell

MRAM

Unit cell:
Magnetic Tunneling Junction

Magnetic Tunnelling Junction

MRAM

MTJ: use Spins, instead of Charges

MRAM-QM

OM (Computing In Memory), A new computing concept inspired by human brain cells, was proposed to address Von Neumann bottleneck

It saves time by minimizing data transit and significantly reduces power consumption.

Edge computing

Endpoint devices produce huge amount of data

ightarrow cloud server unable to sustain computing workload.

Edge servers help to share the workload and return nonimmediacy data to cloud servers

Memory for Edge Server

- High speed
- Low energy consumption
- Endurance
- Non-volatile

Application

- IoT
- AR/VR
- Autonomous vehicle
- Intelligent factory
- Sensor

MRAM-Avionics

Avalanche Technology's Persistent SRAM is a type of MRAM that can operates successfully in harsh environments.

P-SRAM (MRAM)	Parallel x32 (Gen 3)	Serial D-QSPI (Gen 3)	
Densities	1Gb, 2Gb, 4Gb, 8Gb	1Gb, 2Gb, 4Gb, 8Gb	
Voltages	3.0V (2.70V to 3.60V)	3.0V (2.70V to 3.60V)	
Package	142-ball FBGA	96-ball FBGA	
Temperature Ranges	Space-Grade (-40°C to 125°C)	Space-Grade (-40°C to 125°C)	

MRAM-Automobiles

MRAM will bring revolution to memory and advanced processors of automobile.

Memory

Hgh speed

Long cycle life

Endurance

Level 3 Cache

- Low bit density
- Power consumption

- Higher bit density
- Non-volatile

Advanced Materials, 2018

Nature Materials, 2019

Cu(In,Ga)Se₂ (CIGS) Thin Film Solar Cell

What is Solar Cell?

- Conversion efficiency, η
 - →Indicator of power generation

□Structure of solar cell

CIGS Solar Cell

☐ Why we choose Cu(In,Ga)Se₂ (CIGS) solar cell?

EPITAXIAL GROWTH BETWEEN CIGS & MO

COMBINATION OF NAF AND KF

First published: 17 February 2017

Hsu & Lai, Adv. Energy Mater. DOI: 10.1002/aenm.201602571 (2017)

Multi-junction (Tandem) Solar Cell

To further increase the PCE of solar cells beyond Shockley-Quiesser limit

Combine different absorbers with complementary bandgaps

Wide-bandgap active layer harvests high-energy photons

narrow-bandgap active layer captures low-energy photons

Recycling Technologies

Hydrometallurgy

Electrometallurgy

Pyrometallurgy

- Lithium-ion batteries
 Rare-earth magnets
- Liquid crystal displays

Tungsten alloys

Hydrometallurgy for Lithium-ion batteries

For all types LIBs

Chem. Rev. 2020, 120, 7020-7063.

Absolute chemical precipitation

• High purity Li & Co products

99.77 wt% Li₂CO₃

99.55 wt% Co₂O₃ · 3H₂O

Low cost

*LIBs = lithium-ion batteries

Electrometallurgy for Tungsten alloys

Tungsten Alloys

(WC-Co, W-Ti...)

High Purity, High Efficiency, High Flexibility

Electrometallurgy for Rare-earth magnets

Permanent Magnets

Commercial Magnets (NdFeB)

Electrometallurgy

Rare-earth Oxides $(Nd_2O_3, Dy_2O_3, Pr_2O_3)$

Theoretical Prediction

FeO₄²-+PrO++Nd₂O₃+Dy₂O₃

Advantages:

- ✓ Low-Carbon Materials
- ✓ Cut Costs of Recycling
- ✓ Process Time Reduction

Advanced Storage & Energy Lab, NTHU

Pyrometallurgy for Liquid crystal displays

Liquid crystal displays (ex. In-Sn oxide, ITO)

Endanger elements

♣ Microwave-assisted approach

Advantages:

- ✓ Fast andSelective heating
- Enhanced reactivity
- ✓ High energy efficiency
- ✓ Overall cost effectiveness

Thank you chlai@mx.nthu.edu.tw